Smart River Engineering

Chapter 3. Streamflow Measurement

Sung-Uk Choi

Department of Civil & Environmental Engineering Yonsei University

	3. Discharge Measurement							
Average Velo	Average Velocity							
• Finite (or Reduced) Point Methods	Finite (or Reduced) Point Methods							
$ \begin{array}{ c c c c c c } \hline Depth (m) & No. of Measures & Average Velocity \\ \hline 0.3 - 0.6 & 1 & \overline{V} = V_{0.6} \\ \hline 0.6 - 3.0 & 2 & \overline{V} = 1/2(V_{0.2} + V_{0.8}) \\ \hline 3.0 - 6.0 & 3 & \overline{V} = 1/4(V_{0.2} + 2V_{0.6} + V_{0.8}) \\ \hline > 6.0 & 5 & \overline{V} = 1/10(V_{s1} + 3V_{0.2} + 2V_{0.6} + 2V_{0.6} + 2V_{0.6}) \\ \hline \end{array} $:V _{0.8} + V _{b1})*							
• $V_{0.2}$ means the velocity 0.2*d from the	water surface.							
 Vs1 and Vb1 mean the velocities mea 	asured from 0.3 m from the							
water surface and bed, respectively.								

EXAMPLE I For a par	ROBLEM 5.1 ticular stream, e	stimat	e the	flow r	ate (r	unofi	for this case) u
the follow the total) measures.	ving data for vel and the cross	locitie -sectio	s mea onal a	sured irea c	at two	o dej pond	hs (0.2 and 0.8 g to the veloc
SECTION	SAMPLE DEPTHS	1	2	3	4	5	
Velocity (m/s)	0.2 <i>D</i>	0.4	0.8	1.2	1.0	0.6	
(11/0)			0.6	13	12	0.0	
(11/0)	0.8D	0.3	0.0			0.6	

• Don't be afraid to dream big, but remember dreams without goals are just dreams and they ultimately fuel disappointment. So have dreams but have goals. To achieve these goals, you must apply (discipline) and () everyday. You have to work at it. I try to give myself a goal everyday. Sometimes it's just not to curse somebody out. Denzel Washington